Step of Proof: p-mu-exists
11,40
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
p-mu-exists
:
1.
P
:
2.
n
:
3.
n1
:
. (
n1
<
n
)
(
(
P
(
n1
)))
(
x
:
+ Top. p-mu(
P
;
x
))
4.
(
P
(
n
))
5.
(
i
:{0..
n
}. (
(
P
(
i
))))
x
:
+ Top. p-mu(
P
;
x
)
latex
by (InstConcl [inl
n
])
CollapseTHEN ((Auto
)
CollapseTHEN ((RepUR ``p-mu`` ( 0)
)
Co
CollapseTHEN ((Auto
)
CollapseTHEN ((ParallelOp ( -2)
)
CollapseTHEN ((InstConcl [
i
])
Co
CollapseTHEN (Auto
)
)
)
)
)
)
latex
C
.
Definitions
inl
x
,
p-mu(
P
;
x
)
,
,
Void
,
A
,
P
Q
,
False
,
x
:
A
.
B
(
x
)
,
b
,
f
(
a
)
,
x
:
A
B
(
x
)
,
{
i
..
j
}
,
,
{
x
:
A
|
B
(
x
)}
,
i
j
<
k
,
P
&
Q
,
A
B
,
x
:
A
.
B
(
x
)
,
t
T
Lemmas
assert
wf
,
le
wf
origin